• Users Online: 441
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2019  |  Volume : 27  |  Issue : 2  |  Page : 44-48

Traction vasculogenesis: Experimental vessel elongation by traction in rat model


1 Department of Plastic, Reconstructive and Aesthetic Surgery, Kahramanmaras Necip Fazil City Hospital, Kahramanmaras, Turkey
2 Department of Plastic, Reconstructive and Aesthetic Surgery, Ege University, Izmir, Turkey
3 Department of Histology and Embryology, Ege University, Izmir, Turkey

Correspondence Address:
Dr. Cagil Meric Erenoglu
Department of Plastic, Reconstructive and Aesthetic Surgery, Kahramanmaras Necip Fazil City Hospital, Kahramanmaras
Turkey
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/tjps.tjps_55_18

Get Permissions

Background: Microsurgeons may face inadequate vessel length in traumatic or post-resection vascular defects and flap surgery. As tissue regeneration by mechanical forces is possible like in tissue expansion and distraction osteogenesis, we questioned the effect of traction forces on isolated vessels, generated by an internal maxillary distraction device to overcome such problem. Methods: 30 Wistar-Albino rats were randomized in two groups as control and traction. By an internal maxillary distraction device placed subcutaneously to abdominal region, femoral artery and vein of traction group were applied daily traction for 10 days perpendicular to their course. Control group received the same procedure but no traction was applied. Vessel length, blood flow and histologic and microangiographic changes were evaluated on postoperative 11th day. Results: Final length of vessels was found to be higher in the traction group (21.93 mm) compared to control group (12.86 mm). (P = 0.000) Blood-flow patency rate of artery and vein was found 100 % in control group (n = 15) and 80 % in experiment group (n = 12). Microangiographic study showed patent blood flow in both control and traction groups. Histologic evaluation showed vascular wall thickening, perivascular adipocyte and neutrophil infiltration and vein lumen enlargement compared to control group. Conclusion: The preliminary “traction vasculogenesis” technique is found to be a promising technique to gain vessel length in vascular shortness problems. With further studies and refinements this technique may be carried to clinical applications in cases of vascular inadequacy.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed488    
    Printed68    
    Emailed0    
    PDF Downloaded128    
    Comments [Add]    

Recommend this journal